Shuffle Bialgebras
ثبت نشده
چکیده
The goal of our work is to study the spaces of primitive elements of the Hopf algebras associated to the permutahedra and the associahedra. We introduce the notion of shuffle bialgebras, and compute the subpaces of primitive elements associated to these algebras. These spaces of primitive elements have natural structure of some type of algebras which we describe in terms of generators and relations. Applying these results we are able to compute primitive elements of other combinatorial Hopf algebras, and describe the algebraic theories associated to them.
منابع مشابه
Shuffle Bialgebras
The goal of our work is to study the spaces of primitive elements of the Hopf algebras associated to the permutaedra and the associaedra. We introduce the notion of shuffle and preshuffle bialgebras, and compute the subpaces of primitive elements associated to these algebras. These spaces of primitive elements are free objects for some types of algebras which we describe in terms of generators ...
متن کاملOn the algebra of quasi-shuffles
For any commutative algebra R the shuffle product on the tensor module T (R) can be deformed to a new product. It is called the quasi-shuffle algebra, or stuffle algebra, and denoted T q (R). We show that if R is the polynomial algebra, then T q (R) is free for some algebraic structure called Commutative TriDendriform (CTD-algebras). This result is part of a structure theorem for CTD-bialgebras...
متن کامل(Pure) transcendence bases in $\phi$-deformed shuffle bialgebras
Computations with integro-differential operators are often carried out in an associative algebra with unit and they are essentially non-commutative computations. By adjoining a cocommutative co-product, one can have those operators perform on a bialgebra isomorphic to an enveloping algebra. That gives an adequate framework for a computer-algebra implementation via monoidal factorization, (pure)...
متن کاملDouble Bicrossproduct Lie Bialgebras
We construct double biproduct, bicrossproduct, double crossproduct, double bicrossproduct Lie bialgebras from braided Lie bialgebras. The relations between them are found. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double of Lie bialgebras, and Masuoka’s cross product Lie bialgebras. Some properties of double biproduct Lie bialgebras are given. In the a...
متن کاملBraided Lie Bialgebras
We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...
متن کامل